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Abstract. We consider pionic hydrogen Aπp, the bound π−p state. Within the quantum field theoretic
and relativistic covariant approach we calculate the shift and width of the energy level of the ground state
of pionic hydrogen caused by strong low-energy interactions treated perturbatively. The generalization
of the Deser-Goldberger-Baumann-Thirring (DGBT) formulas (S. Deser, M.L. Goldberger, K. Baumann,
W. Thirring, Phys. Rev. 96, 774 (1954)) is given. The generalized DGBT formulas for the energy level
displacement of the ground state of pionic hydrogen contain the non-perturbative and model-independent
correction of about 1%, caused by the relativistic covariant smearing of the wave function of the ground
state around the origin. This non-perturbative correction is very important for the precise extraction
of the S-wave scattering lengths of the πN scattering from the experimental data on the energy level
displacements in pionic hydrogen by the PSI Collaboration. In addition, the shift of the energy level
of the ground state of pionic hydrogen is improved by the second-order correction of strong low-energy
interactions which is about 0.1%. This testifies the applicability of the perturbative treatment of strong
low-energy interactions to the analysis of pionic hydrogen. We show that the width of the energy level of
the ground state of pionic hydrogen is valid to all orders of the perturbation theory in strong low-energy
interactions.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 11.55.Ds Exact S matrices – 13.75.Gx Pion-
baryon interactions – 21.10.-k Properties of nuclei; nuclear energy levels – 36.10.-k Exotic atoms and
molecules (containing mesons, muons, and other unusual particles)

1 Introduction

Pionic hydrogen Aπp is an analogy of the hydrogen with
an electron replaced by the π−-meson. The existence of
pionic hydrogen is fully due to the Coulomb forces [1–3].
The Bohr radius of pionic hydrogen is equal to

aB =
1

µα
=

1
α

( 1
mπ−

+
1

mp

)
= 222.664 fm, (1.1)
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where µ = mπ−mp/(mπ− + mp) = 121.497MeV is the
reduced mass of the π−p system, calculated at mπ− =
139.570MeV and mp = 938.272MeV [4], and α = e2/�c =
1/137.036 is the fine-structure constant defined [4]. Below
we use the units � = c = 1, then α = e2 = 1/137.036.

Since the Bohr radius of pionic hydrogen is much
greater than the radius of strong interactions Rstr ∼
1/mπ− = 1.414 fm, the strong low-energy interactions can
be taken into account perturbatively [1]. Since the mass
of the state π0n is less than the mass of pionic hydro-
gen, mπ0 = 134.977MeV and mn = 939.565MeV [4],
the mesoatom Aπp is unstable under the decay Aπp →
π0 + n [1] caused by strong low-energy interactions. This
decay goes through the intermediate πN scattering, i.e.
Aπp → π−+p → π0+n, the s-channel amplitude of which
is determined by two states with isotopic spin I = 1/2
and I = 3/2. Near threshold the amplitudes of the πN
scattering with isotopic spin I = 1/2 and I = 3/2 are
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defined by the S-wave scattering lengths a
1/2
0 and a

3/2
0 ,

respectively. The relative momenta p of the π−p sys-
tem in the ground state of pionic hydrogen are of order
p ∼ 1/aB = 0.887MeV and smaller compared with the re-
duced mass of the πN system µ = 121.497MeV; therefore
the low-energy limit for the calculation of the amplitude
of the πN scattering is well defined. As a result, the shift
and width of the energy level of the ground state of pio-
nic hydrogen should be expressed in terms of the S-wave
scattering lengths of the low-energy πN scattering.

As has been found by Deser, Goldberger, Baumann
and Thirring [1], due to strong low-energy interactions
the energy level of the ground state of pionic hydrogen
has the following shift and width:

ε1s = −2π
3

1
µ

(
2a1/2

0 + a
3/2
0

)
|Ψ1s(0)|2,

Γ1s =
8π
9

p∗

µ

(
a
1/2
0 − a

3/2
0

)2

|Ψ1s(0)|2, (1.2)

where the relative momentum p∗ is equal to

p∗ =
mp + mπ−

2

×
√[

1 −
( mn + mπ0

mp + mπ−

)2][
1 −

( mn − mπ0

mp + mπ−

)2]
=

28.040MeV (1.3)

and Ψ1s(0) = 1/
√

πa3
B is the wave function of the pionic

hydrogen in the ground state

Ψ1s(�r ) =
1√
πa3

B

e−r/aB (1.4)

at the origin r = 0. We emphasize that the width Γ1s

should be related to the imaginary part of the energy level
shift E1s by the relation Γ1s = −2 ImE1s

1.
The DGBT formulas (1.2) can be transcribed into an

equivalent form given by Deser, Goldberger, Baumann and
Thirring [1]

− ε1s

E1s
= −4

3
1
aB

(
2a1/2

0 + a
3/2
0

)
,

−Γ1s

E1s
=

16
9

p∗

aB

(
a
1/2
0 − a

3/2
0

)2

, (1.5)

where E1s = −α/2aB is the binding energy of the ground
state of pionic hydrogen.

All attempts of the generalization of the relations (1.5)
have been undertaken within the quantum-mechanical po-
tential non-relativistic approach [2].

The accuracy of the modern level of experimental
analysis of the parameters of pionic hydrogen reached by
the PSI Collaboration is about 0.2% for the shift and 1%
for the width of the energy level of the ground state of pio-
nic hydrogen [5]. Since the derivation of the relations (1.2)

1 Recall that in ref. [1] there has been calculated the semi-
width defined by Γ1s = −ImE1s.

has been carried out within the potential non-relativistic
approach, the modern level of experimental accuracy de-
mands the derivation of the shift and width of the energy
level of the ground state of pionic hydrogen in a fully quan-
tum field theoretic and relativistic covariant approach.

We would like to accentuate that a quantum field
theoretical analysis of the DGBT formulas has been re-
cently carried out by Lyubovitskij and Rusetsky [6] and
Lyubovitskij et al. [7]. They have performed a consistent
analysis of QCD isospin-breaking and electromagnetic cor-
rections to the shift of the energy level described by (1.2).
Numerically, the QCD isospin-breaking and electromag-
netic corrections calculated in [6,7] are compared well with
results obtained within the potential model approach [8].

The paper is organized as follows: In sect. 2 we de-
termine the wave function of the ground state of pio-
nic hydrogen within the quantum field theoretic and rel-
ativistic covariant approach. In sect. 3 we give general
formulas for the energy level shift ε1s and the width Γ1s

of the ground state of pionic hydrogen within the quan-
tum field theoretic and relativistic covariant approach. In
sect. 4 we calculate ε

(1)
1s , the shift of the energy level of

the ground state of pionic hydrogen to the first order of
the perturbation theory. The obtained result we represent
as ε

(1)
1s = ε

(0)
1s (1 + δ

(s)
1s ), where ε

(0)
1s is defined by (1.5). The

correction δ
(s)
1s = −9.69×10−3 is caused by the relativistic

smearing of the wave function of the ground state of pionic
hydrogen around the origin r = 0. In sect. 5 we calculate
ε
(2)
1s = ε

(0)
1s δ

(2)
1s , the shift of the energy level to the sec-

ond order of the perturbation theory in strong low-energy
interactions, and the width Γ1s = Γ

(0)
1s (1 + δ

(s)
1s ), where

Γ
(0)
1s is given by (1.5), of the energy level of the ground

state of pionic hydrogen. In sect. 6 we discuss a removal
of ultra-violet divergences of ε

(2)
1s by renormalization of the

reduced mass of the π−p system. In sect. 7 we summarize
the contributions to the energy level displacement of the
ground state of pionic hydrogen and give the generaliza-
tion of the DGBT formulas: i) ε1s = ε

(0)
1s

(
1 + δ

(s)
1s + δ

(2)
1s

)
and ii) Γ1s = Γ

(0)
1s

(
1 + δ

(s)
1s

)
. In sect. 8, using the exper-

imental data on the S-wave scattering lengths of the πN
scattering obtained by the PSI Collaboration [9], we esti-
mate the ratio δ

(2)
1s = ε

(2)
1s /ε

(1)
1s = (0.111 ± 0.006)%. This

testifies the applicability of the perturbative treatment of
strong low-energy interactions to the analysis of the en-
ergy level displacements of pionic hydrogen. We show also
that the width of the energy level Γ1s = Γ

(0)
1s

(
1 + δ

(s)
1s

)
is

valid to all orders in the perturbation theory. The former
is due to the Adler consistency condition [10,11]. In the
conclusion we discuss the obtained results. In appendix A
we calculate the momentum integral (4.6) defining the en-
ergy level displacement of the ground state of pionic hy-
drogen within the quantum field theoretic and relativistic
covariant approach. In appendix B we have relegated the
lengthy intermediate calculations of ε

(2)
1s and Γ1s.
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2 Ground-state wave function of pionic
hydrogen

The wave function of pionic hydrogen in the ground state
we define as [12,13]

|A(1s)
πp (�P , σp)〉 =

1
(2π)3

∫
d3kπ−√

2Eπ−(�kπ−)

× d3kp√
2Ep(�kp)

δ(3)(�P − �kπ− − �kp)

×
√

2E(1s)
A (�kπ− +�kp)Φ1s(�kπ−)|π−(�kπ−)p(�kp, σp)〉, (2.1)

where E
(1s)
A (�P ) =

√
M

(n)
A

2
+ �P 2 and �P are the total en-

ergy and the momentum of pionic hydrogen, respectively;
M

(1s)
A = mp + mπ− + E1s and E1s are the mass and the

binding energy of pionic hydrogen in the ground bound
state, respectively; σp is the polarization. Then, Φ1s(�kπ−)
is the wave function of the ground state in the momentum
representation. It is normalized as∫

d3k

(2π)3
|Φ1s(�k )|2 = 1. (2.2)

The wave function |π−(�kπ−)p(�kp, σp)〉 we define as [12,13]

|π−(�kπ−)p(�kp, σp)〉 = c†π−(�kπ−)a†
p(�kp, σp)|0〉, (2.3)

where c†π−(�kπ−) and a†
p(�kp, σp) are operators of creation of

the π−-meson with momentum �kπ− and the proton with
momentum �kp and polarization σp = ±1/2. They sat-
isfy standard relativistic covariant commutation and anti-
commutation relations

[cπ−(�k ′
π−), c†π−(�kπ−)] = (2π)3 2Eπ−(�kπ−) δ(3)(�k ′

π−−�kπ−),

[cπ−(�k ′
π−), cπ−(�kπ−)] = [c†π−(�k ′

π−), c†π−(�kπ−)] = 0,

{ap(�k ′
p, σ

′
p), a

†
p(�kp, σp)} =

(2π)3 2Ep(�kp) δ(3)(�k ′
p − �kp) δσ ′

pσp
,

{ap(�k ′
p, σ

′
p), ap(�kp, σp)} = {a†

p(�k
′
p, σ

′
p), a

†
p(�kp, σp)} = 0.

(2.4)

The wave function (2.1) is normalized by

〈A(1s)
πp (�P ′, σ ′

p)|A(1s)
πp (�P , σp)〉 =

(2π)3 2E(1s)
A (�P ) δ(3)(�P ′ − �P ) δσ ′

pσp

×
∫

d3k

(2π)3
|Φ1s(�k )|2 =

(2π)3 2E(1s)
A (�P ) δ(3)(�P ′ − �P ) δσ ′

pσp
. (2.5)

This is a relativistic covariant normalization of the wave
function.

We will apply the wave function (2.1) to the calculation
of the energy level displacement of the ground state of
pionic hydrogen within the quantum field theoretic and
the relativistic covariant approach.

3 Energy level displacement of the ground
state. Quantum field theoretic approach

The quantum field theoretic description of strong low-
energy interactions can be carried out by the effective
Lagrangian Lstr(x). For the quantum field theoretic and
model-independent derivation of the DGBT formulas (1.2)
we will not specify Lstr(x) in terms of interpolating fields
of the coupled mesons and baryons. We would like to em-
phasize that Lstr(x) is a total effective Lagrangian ac-
counting for all strong interactions. In other words this
effective Lagrangian defines the Tstr-matrix of strong in-
teractions

Tstr =
∫

d4xLstr(x) (3.1)

obeying the unitary condition [12,14]

Tstr − T
†
str = iT†

strTstr. (3.2)

This means that the matrix element of the ef-
fective Lagrangian Lstr(0) between the initial state
|N i(qi, σi)πa(pa)〉 and the final state |N j(qj , σj)πb(pb)〉
defines the total amplitude of the πN scattering [15,16]

〈πb(pb)N j(qj , σj)|Lstr(0)|N i(qi, σi)πa(pa)〉 =

δba δji 1
3
(T 1/2 + 2T 3/2)σjσi

−i εbacτ cji 1
3
(T 1/2 − T 3/2)σjσi

, (3.3)

where T
1/2
σjσi and T

3/2
σjσi are amplitudes of the πN scat-

tering with isotopic spin I = 1/2 and I = 3/2, respec-
tively, εbac is the anti-symmetric unit tensor, a(b) = 1, 2, 3
and i(j) = 1, 2 are isotopic indices of pions and nucleons,
τ c (c = 1, 2, 3) are 2 × 2 Pauli matrices. From (3.3) for
given channels of the πN scattering we get [16]

〈π+p|Lstr(0)|p π+〉 = 〈π−n|Lstr(0)|nπ−〉 = T 3/2,

〈π−p|Lstr(0)|p π−〉 = 〈π+n|Lstr(0)|nπ+〉 =
1
3

(2T 1/2 + T 3/2),

〈π0n|Lstr(0)|p π−〉 = 〈π+n|Lstr(0)|p π0〉 =√
2

3
(T 3/2 − T 1/2),

〈π0n|Lstr(0)|nπ0〉 =
1
3

(T 1/2 + 2T 3/2). (3.4)

At threshold the amplitudes T 1/2 and T 3/2 are propor-
tional to the S-wave scattering lengths a

1/2
0 and a

3/2
0 .

Since for the calculation of the shift and width of the
energy of the pionic hydrogen ground state the strong in-
teractions can be treated as a perturbation, we define the
S-matrix [13] as

S = 1 + i T = Texp i

∫
d4xLstr(x), (3.5)

where T is a time-ordering operator.
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We would like to emphasize that expanding the expo-
nential in powers of Lstr(x) and calculating the matrix ele-
ments of these operators for pionic-hydrogen ground state
one encounters divergences which should be removed only
by renormalization of the reduced mass of pionic hydro-
gen. This is in complete agreement with the calculation of
the Lamb shift of hydrogen [17] (see also [18]).

It is important to notice that no hadronic loops should
appear for the calculation of matrix elements of the ex-
pansion in powers of Lstr(x). The perturbation theory
with respect to Lstr(x) will be developed in the tree-
approximation. Therefore, the parameters of the low-
energy πN scattering, such as the S-wave scattering
lengths a

1/2
0 and a

3/2
0 appearing in our expressions, are

unrenormalizable. They define observable S-wave scatter-
ing lengths.

For the derivation of the DGBT formulas (1.2) it suf-
fices to expand the exponential in powers of Lstr(x) up to
the second order inclusively:

S = 1 + i T = 1 + i

∫
d4x1 Lstr(x1)

−1
2

∫
d4x1d4x2 T(Lstr(x1)Lstr(x2)) + . . . . (3.6)

The shift and width of the energy level of the ground state
of the pionic hydrogen should be defined by the matrix
element

〈A(1s)
πp (�P ′, σ ′ )|T|A(1s)

πp (�P , σp)〉 =
∫

d4x1

×〈A(1s)
πp (�P ′, σ ′ )|Lstr(x1)|A(1s)

πp (�P , σp)〉 +
i

2

∫
d4x1d4x2

×〈A(1s)
πp (�P ′, σ ′ )|T(Lstr(x1)Lstr(x2))|A(1s)

πp (�P , σp)〉 =

(2π)4δ(4)(P ′ − P )
[
〈A(1s)

πp (�P ′, σ ′ )|Lstr(0)|A(1s)
πp (�P , σp)〉

+
i

2

∫
d4x 〈A(1s)

πp (�P ′, σ ′)|T(Lstr(x)Lstr(0))|A(1s)
πp (�P , σp)〉

]
,

(3.7)

where |A(1s)
πp (�P , σp)〉 is the wave function of the Aπp

mesoatom in the ground bound state with momentum �P
and polarization σp.

Setting �P ′ = �P and σ ′ = σp, we get

lim
T,V →∞

1
V T

〈A(1s)
πp (�P , σp)|T|A(1s)

πp (�P , σp)〉 =

〈A(1s)
πp (�P , σp)|Lstr(0)|A(1s)

πp (�P , σp)〉
+

i

2

∫
d4x〈A(1s)

πp (�P , σp)|T(Lstr(x)Lstr(0))|A(1s)
πp (�P , σp)〉,

(3.8)

where TV is a 4-dimensional volume [12] defined by
(2π)4δ(4)(0) = TV .

According to [12], the energy level shift ε1s and the par-
tial width Γ1s can be defined by the matrix element (3.8)

at the rest frame of pionic hydrogen, where �P = 0, as

lim
T,V →∞

〈A(1s)
πp (�P , σp)|T|A(1s)

πp (�P , σp)〉
2E(1s)

A (�P )V T

∣∣∣
�P=0

= −ε1s + i
Γ1s

2
.

(3.9)
Formally, this is a general formula for the energy level
displacement of the ground state of pionic hydrogen. It
is valid to any order of the perturbation theory in strong
low-energy interactions, where T is defined by (3.5).

The shift of the energy level ε1s, calculated to the sec-
ond order of the perturbation theory in strong low-energy
interactions, we determine as

ε1s = ε
(1)
1s + ε

(2)
1s , (3.10)

where ε
(1)
1s and ε

(2)
1s are given by the first and second terms

in (3.8), respectively. The partial width Γ1s is defined only
by the contribution of the second term in (3.8).

4 Calculation of ε
(1)
1s

The first term in (3.10) can be written as

〈A(1s)
πp (�P , σp)|Lstr(0)|A(1s)

πp (�P , σp)〉 = 2E(1s)
A (�P )

1
(2π)6

×
∫

d3kπ−√
2Eπ−(�kπ−)

d3kp√
2Ep(�kp)

d3qπ−√
2Eπ−(�qπ−)

d3qp√
2Ep(�qp)

× δ(3)(�P−�kπ−−�kp)δ(3)(�P−�qπ−−�qp)Φ
†
1s(�kπ−)Φ1s(�qπ−)

×〈π−(�kπ−)p(�kp, σp)|Lstr(0)|π−(�qπ−)p(�qp, σp)〉. (4.1)

Setting �P = 0 and making necessary integrations we tran-
scribe the r.h.s. of (4.1) into the form

〈A(1s)
πp (0, σp)|Lstr(0)|A(1s)

πp (0, σp)〉 = 2M (1s)
A

×
∫

d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

∫
d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×〈π−(�k )p(−�k, σp)|Lstr(0)|π−(�q )p(−�q, σp)〉. (4.2)

The matrix element 〈π−(�k )p(−�k, σp)|Lstr(0)|π−(�q )
p(−�q, σp)〉 defines the amplitude of the elastic π−p
scattering:

〈π−(�k )p(−�k, σp)|Lstr(0)|π−(�q )p(−�q, σp)〉 =
1
3

(2T 1/2 + T 3/2). (4.3)

Since due to the wave functions Φ†
1s(�k ) and Φ1s(�q ) the

integrands are concentrated around momenta q ∼ k ∼
1/aB = 0.887MeV, which are smaller compared with the
reduced mass of the π−p system µ = 121.497MeV, the
matrix element (4.3) can be calculated in the low-energy
limit at k = q = 0. In the limit k, q → 0 the amplitude
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of the elastic π−p scattering can be expressed in terms of
the S-wave scattering lengths a

1/2
0 and a

3/2
0 and reads

lim
k,q→0

〈π−(�k )p(−�k, σp)|Lstr(0)|π−(�q )p(−�q, σp)〉 =

8π
3

(mπ− + mp)
(
2a1/2

0 + a
3/2
0

)
. (4.4)

Substituting (4.4) in (4.2) we obtain

〈A(1s)
πp (0, σp)|Lstr(0)|A(1s)

πp (0, σp)〉 =

2M (1s)
A

8π
3

(mπ− + mp)
(
2a1/2

0 + a
3/2
0

)

×
∫

d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )
. (4.5)

According to the definition (3.9), the energy level shift ε
(1)
1s

is equal to

ε
(1)
1s = −2π

3
1
µ

(
2a1/2

0 + a
3/2
0

)

×
∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣
2

. (4.6)

Formula (4.6) is a generalization of the DGBT formula due
to the quantum field theoretic and relativistic covariant
approach. The momentum integral in (4.6) is calculated
in appendix A and the result reads (A.9)

∫
d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k ) = Ψ1s(0)

(
1 +

1
2

δ
(s)
1s

)
,

(4.7)
where δ

(s)
1s is equal to

δ
(s)
1s = −α

µ

mπ−

8√
π

Γ (3/4)
Γ (1/4)

+ O(α2) = −9.69 × 10−3.

(4.8)
The parameter δ

(s)
1s defines the non-perturbative and

model-independent correction caused by the quantum
field theoretic and relativistic covariant approach. The in-
dex s means the smearing of the wave function of the
ground state of pionic hydrogen around the origin r = 0

due to the relativistic factor
√

mπ−mp/Eπ−(�k )Ep(�k ).
Substituting (4.7) in (4.6) we represent the energy level

shift ε
(1)
1s as

ε
(1)
1s = −2π

3
1
µ

(
2a1/2

0 + a
3/2
0

)
|Ψ1s(0)|2

(
1 + δ

(s)
1s

)
(4.9)

or in the equivalent form

− ε
(1)
1s

E1s
= −4

3
1
aB

(
2a1/2

0 + a
3/2
0

) (
1 + δ

(s)
1s

)
. (4.10)

The non-perturbative correction δ
(s)
1s to the DGBT for-

mula makes up 0.969%. It is important for the more pre-
cise extraction of the S-wave scattering lengths of the πN
scattering from the experimental data on the displacement
of the energy level of the ground state of pionic hydro-
gen [5,9]. Recall that the precision of the experimental
data on the shift of the energy level of the ground state of
pionic hydrogen is about 0.2% [5] and 0.5% [9].

5 Calculation of ε
(2)
1s and Γ1s

The energy level shift ε
(2)
1s and width Γ1s are defined by the

second term in (3.8). The calculations of these terms are
rather lengthy and we have relegated them to appendix B.
For the energy level shift ε

(2)
1s we have obtained

ε
(2)
1s = −2

3
1
µ2

[
2(a1/2

0 )2 + (a3/2
0 )2

]

×
∫ ∞

0

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− + Q2 +
√

m2
p + Q2 − mπ− − mp

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

, (5.1)

where we have neglected the electromagnetic mass differ-
ences. The integral over Q is logarithmically divergent.
This is very similar to the quantum field theoretic calcu-
lation of the Lamb shift [12]. According to Bethe [17] (see
also [12]), the integral over Q should be restricted from
above by the cut-off K. For the calculation of the Lamb
shift of hydrogen Bethe set K equal to the mass of the
electron, the reduced mass of the e−p system. Unlike the
Lamb shift of the hydrogen the relative momenta of the
π−p and π0n pairs cannot exceed the value Q ∼ 1/aB.
Therefore, for the regularization of the divergent integral
we have to set K = 1/aB = αµ. This yields 2

∫ ∞

0

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− + Q2 +
√

m2
p + Q2 − mπ− − mp

→

∫ αµ

0

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− +Q2 +
√

m2
p+Q2−mπ−−mp

= 2αµ2. (5.2)

2 In the next section we show that the divergent integral can
be removed by the renormalization of the reduced mass of the
π−p bound system.
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Substituting (5.2) in (5.1) we obtain the energy level shift
ε
(2)
1s :

ε
(2)
1s = −α

4
3

[
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2 ]

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

. (5.3)

The second-order contribution to the shift of the energy
level of the ground state is negative. This agrees with
the theorem of the quantum-mechanical perturbation the-
ory [12].

Neglecting the smearing of the wave function around
the origin, which is of order of O(α) (see appendix A), we
can rewrite (5.3) as

ε
(2)
1s = −α

4
3

[
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2 ]
|Ψ1s(0)|2 (5.4)

or in the equivalent form

− ε
(2)
1s

E1s
= − 8

3π
1
a2
B

[
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2 ]
. (5.5)

The width Γ1s is defined by (B.11) (see appendix B). Since
the contribution of the π−p state to the width Γ1s is pro-
hibited kinematically, we obtain

Γ1s =
1

mπ−mp

[
8π
3

(mπ− + mp)
(
a
1/2
0 − a

3/2
0

)]2

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

×
∫

d3Q

(2π)32Eπ0( �Q)2En( �Q)

×π δ(Eπ0( �Q) + En( �Q) − mπ− − mp). (5.6)

The integral over �Q is equal to∫
d3Q

(2π)32Eπ0( �Q)2En( �Q)

×πδ(Eπ0( �Q)+En( �Q)−mπ−−mp)=
µ

mπ−mp

p∗

8π
, (5.7)

where p∗ is defined by (1.3). Substituting (5.7) in (5.6) we
obtain the width of the energy level of the ground state of
pionic hydrogen

Γ1s =
8π
9

(
a
1/2
0 − a

3/2
0

)2 p∗

µ

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

. (5.8)

Using (4.7) we transcribe the r.h.s. of (5.8) into the form

Γ1s =
8π
9

(
a
1/2
0 − a

3/2
0

)2 p∗

µ
|Ψ1s(0)|2

(
1 + δ

(s)
1s

)
(5.9)

or in the equivalent form

−Γ1s

E1s
=

16
9

p∗

aB

(
a
1/2
0 − a

3/2
0

)2 (
1 + δ

(s)
1s

)
(5.10)

with δ
(s)
1s given by (4.8).

The partial width Γ1s, defined by (5.10), is the general-
ization of the DGBT formula due to the non-perturbative
and model-independent contribution caused by the quan-
tum field theoretic and relativistic covariant approach.
This correction makes up about 1%. The account for this
correction is important for the precision of the extraction
of the S-wave scattering lengths from the experimental
data by the PSI Collaboration. Remind that the precision
of the measurement of Γ1s is 1% [5].

6 Renormalization of the reduced mass of
pionic hydrogen and finiteness of ε

(2)
1s

We have found that the second-order contribution to the
shift of the energy level ε

(2)
1s diverges logarithmically. The

appearance of divergent contributions to the shifts of the
energy levels of hydrogen-like atoms is a well-known phe-
nomenon which spans about 60 years since the pioneering
paper by Bethe in 1947 [17] who adopted Kramers’s prin-
ciple [19] of the renormalization of the electron mass to
the removal of ultra-violet divergences of the second-order
contribution to the shift of the energy level of the 2s state
of hydrogen (see also [20,21,18]).

The Hamilton operator of pionic hydrogen is given
by [18]

ĤAπp
=

�̂p
2

2µ0
− α

r
+ Hstr, (6.1)

where �̂p = −i∇ is the operator of the relative motion of
the π−p system and r is the relative distance, µ0 is the bare
reduced mass and Hstr = − ∫

d3xLstr(x). Introducing the
physical renormalized reduced mass µ0 = µ − δµ, we can
rewrite the Hamilton operator (6.1) as follows [18] 3:

ĤAπp
=

�̂p
2

2(µ − δµ)
− α

r
+ Hstr =

�̂p
2

2µ
− α

r
+ Hstr + δµ

�̂p
2

2µ2
. (6.2)

The energy of the ground state calculated up to the second
order in strong low-energy interaction reads

E1s = E
(0)
1s + ε

(1)
1s + ε

(2)
1s +

δµ

2µ2

〈
1s|�̂p 2|1s

〉
, (6.3)

where E
(0)
1s = −α/2aB = −α2µ/2. The last term in (6.3)

is equal to
δµ

2µ2

〈
1s|�̂p 2|1s

〉
=

δµ

2µ2a2
B

. (6.4)

3 Since we do not calculate closed hadron loops caused by
Hstr = − ∫

d3xLstr(x), the parameters of strong interactions
are left unrenormalized and equal to measured values.
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Following [18] the renormalization of the mass δµ should
cancel the divergent part of ε

(2)
1s (5.1). This yields

δµ =
4
3

a2
B

[
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2 ]
×

∫ ∞

K

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− + Q2 +
√

m2
p + Q2 − mπ− − mp

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

, (6.5)

where K is the cut-off. Hence, the renormalized shift of
the energy level is given by

ε1s = ε
(1)
1s + ε

(2)
1s (K), (6.6)

where ε
(1)
1s is defined by (4.6) and ε

(2)
1s (K) reads

ε
(2)
1s (K) = −2

3
1
µ2

[
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2 ]

×
∫ K

0

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− + Q2 +
√

m2
p + Q2 − mπ− − mp

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

. (6.7)

Since the relative momenta of the π−p and π0n pairs can-
not exceed the value 1/aB, we have to set K = 1/aB = αµ.
This gives the expression (5.3).

We would like to emphasize that the integral over Q
depends substantially on the ultra-violet cut-off K even if
K � mp. Indeed, in the limit mp → ∞ the result of the
regularization of the integral over Q reads∫ ∞

0

dQQ2√
(m2

π− + Q2)(m2
p + Q2)

× mπ−mp√
m2

π− + Q2 +
√

m2
p + Q2 − mπ− − mp

→

∫ K

0

dQQ2√
m2

π− + Q2

mπ−√
m2

π− + Q2 − mπ−

=

mπ−K

[
1+

mπ−

K
+n

(
K

mπ−
+

√
1+

K2

m2
π−

)]
. (6.8)

Setting, for example, K = µ, we get 1.904µ2 instead of
2αµ2 (5.2). This increases the contribution of strong low-
energy interactions to the second order of the perturba-
tion theory by a factor of 131. The former contradicts the

experimental data [5,9] and confirms our choice of the
cut-off, K = αµ.

We would like to emphasize that this does not mean
that we tune the value of the cut-off to fit the experimental
data of the shift of the energy level of pionic hydrogen [9].
This implies only that, in agreement with our assumption,
the experimental data on the energy level displacement of
the ground state of pionic hydrogen testify the impossibil-
ity for the pair π−p, bound by Coulombic force, to have
virtual momenta greater than αµ.

In sect. 8 we calculate a numerical value of ε
(2)
1s rela-

tive to ε
(1)
1s , ε

(2)
1s /ε

(1)
1s = 1.11 × 10−3, which agrees numeri-

cally with the result obtained by Trueman, |ε(2)1s /ε
(1)
1s | ∼

aπ−p/aB = αµ
(
2a1/2

0 + a
3/2
0

)
= 1.68 × 10−3, within

the non-relativistic potential model approach [1]. Such an
agreement is in favour of our choice of the cut-off, K = αµ.

7 Generalization of the DGBT formulas

Summarizing the results obtained in preceding sections
we get the total shift and width of the energy level of the
ground state of pionic hydrogen:

ε1s =−2π
3

1
µ

{(
2a1/2

0 +a
3/2
0

)
+

2α
π

µ

(
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2
)}

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

,

Γ1s =
8π
9

(
a
1/2
0 − a

3/2
0

)2 p∗

µ

×
∣∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k )

∣∣∣∣∣∣
2

. (7.1)

These are the DGBT formulas generalized by i) the non-
perturbative corrections caused by a quantum field the-
oretic and relativistic covariant approach, leading to the
smearing of the wave function of the ground state of pionic
hydrogen around the origin r = 0, and ii) the second-order
correction of the perturbation theory in strong low-energy
interactions.

The formulas (7.1) can be rewritten as

ε1s = −2π
3

1
µ

(
2a1/2

0 + a
3/2
0

)
|Ψ1s(0)|2

(
1 + δ

(s)
1s + δ

(2)
1s

)
,

Γ1s =
8π
9

(
a
1/2
0 − a

3/2
0

)2 p∗

µ
|Ψ1s(0)|2

(
1 + δ

(s)
1s

)
(7.2)

or in the equivalent form

− ε1s

E1s
= −4

3
1
aB

(
2a1/2

0 + a
3/2
0

) (
1 + δ

(s)
1s + δ

(2)
1s

)
,

−Γ1s

E1s
=

16
9

p∗

aB

(
a
1/2
0 − a

3/2
0

)2 (
1 + δ

(s)
1s

)
, (7.3)
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where δ
(s)
1s is given by (4.8) and δ

(2)
1s is defined by

δ
(2)
1s =

2
π

1
aB

2
(
a
1/2
0

)2

+
(
a
3/2
0

)2

2a1/2
0 + a

3/2
0

=

2α
π

µ
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2

2a1/2
0 + a

3/2
0

. (7.4)

Formulas (7.3) for the displacement of the energy level
of the ground state of pionic hydrogen should be applied
to a theoretical analysis of experimental data by the PSI
Collaboration [5].

8 Theoretical accuracy of the DGBT formulas

The displacement of the energy level of the ground state
of pionic hydrogen, caused by strong low-energy interac-
tions, has been recently measured by the PSI Collabora-
tion [9].The results read

ε1s = −7.108 ± 0.013 (stat.) ± 0.034 (syst.) eV,

Γ1s = 0.868 ± 0.040 (stat.) ± 0.038 (syst.) eV. (8.1)

This gives the experimental values of the S-wave scatter-
ing lengths [9]

aπ−p→π−p = +0.0883 ± 0.0008m−1
π− ,

aπ−p→π0n = −0.1280 ± 0.0060m−1
π− , (8.2)

which were obtained by fitting the DGBT formulas (1.5) 4.
For the S-wave scattering lengths a

1/2
0 and a

3/2
0 we obtain

a
1/2
0 = +0.1788 ± 0.0043m−1

π− ,

a
3/2
0 = −0.0927 ± 0.0085m−1

π− . (8.3)

We would like to emphasize that the experimental val-
ues of the S-wave scattering lengths (8.3) satisfy Adler’s
consistency condition [10,11]

a
1/2
0 + 2a3/2

0 = 0. (8.4)

The experimental value is a
1/2
0 + 2a3/2

0 = −0.0066 ±
0.0175m−1

π− .
Let us now estimate the contribution of the second-

order correction ε
(2)
1s relative to ε

(1)
1s . Using (5.3) and (4.6)

we get

ε
(2)
1s

ε
(1)
1s

=
2α
π

µ
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2

2a1/2
0 + a

3/2
0

=

(1.11 ± 0.06) × 10−3 = (0.111 ± 0.006)% . (8.5)

4 The electromagnetic corrections [8] have been also taken
into account [9].

This testifies that strong low-energy interactions can be
treated perturbatively for the analysis of the energy level
displacement of the ground state of pionic hydrogen.

The theoretical accuracy of the DGBT formula for the
shift of the energy level ε1s, relative to the expression given
by (7.3), is defined by

δ1s = δ
(s)
1s + δ

(2)
1s = −9.69×10−3 + (1.11 ± 0.06)×10−3 =

(−8.58 ± 0.06) × 10−3 . (8.6)

The first term, δ(s)
1s = −9.69×10−3, does not depend on the

S-wave scattering lengths. This is the non-perturbative
and model-independent correction caused by the rela-
tivistic factor

√
mπ−mp/Eπ−(k)Ep(k), smearing the wave

function of pionic hydrogen around the origin r = 0. The
second term, δ

(2)
1s = (1.11 ± 0.06) × 10−3, depends ex-

plicitly on the S-wave scattering lengths. It is defined by
strong low-energy interactions to the second order of the
perturbation theory. We would like to emphasize that the
correction δ

(2)
1s is model-independent as well as δ

(s)
1s .

The width of the energy level Γ1s, given by (7.3), is
valid to any order of the perturbation theory in strong
low-energy interactions. Indeed, the contribution of the
next-to-leading corrections should be related to the π0n
rescattering in the final state [22]. The width Γ1s, modified
by the inclusion of the π0n rescattering, reads [22]

−Γ1s

E1s
=

16
9

(
a
1/2
0 − a

3/2
0

)2

1 + 1
9 p∗2

(
a
1/2
0 + 2a3/2

0

)2

p∗

aB

(
1 + δ

(s)
1s

)
.

(8.7)
Due to Adler’s consistency condition (8.4) the contribu-
tion of the π0n rescattering vanishes and we arrive at the
expression (7.3). Of course, this assertion does not con-
cern electromagnetic corrections which should be taken
into account as has been done for the pionium, the bound
π+π− state, by Gasser et al. [23].

Hence, one can argue that the width of the energy level
of the ground state of pionic hydrogen given by (7.3) is
valid to all orders of the perturbation theory in strong low-
energy interactions. Therefore, the theoretical accuracy of
the DGBT formula for the width (1.5) is defined by the
non-perturbative correction caused by the smearing of the
wave function around the origin, i.e. δ

(s)
1s = −9.69× 10−3.

9 Conclusion

The revision of the DGBT formulas, derived in the middle
of the last century within a non-relativistic potential ap-
proach, is motivated by the contemporary level of the de-
velopment of experimental and theoretical physics. The
possibility to measure the displacement of the energy level
of the ground state of pionic hydrogen with the accuracy
0.2% for the shift and 1% for the width, reached by the
PSI Collaboration [5], imposes new strict requirements on
theoretical formulas.
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The derivation of the energy level displacement of the
ground state of pionic hydrogen within a quantum field
theoretic and relativistic covariant approach, developed
above, has led to the corrected DGBT formulas

− ε1s

E1s
= −4

3
1
aB

(
2a1/2

0 + a
3/2
0

) (
1 + δ

(s)
1s + δ

(2)
1s

)
=

−4
3

1
aB

(
2a1/2

0 + a
3/2
0

)
(1 + (−8.58 ± 0.06)×10−3),

−Γ1s

E1s
=

16
9

p∗

aB

(
a
1/2
0 − a

3/2
0

)2 (
1 + δ

(s)
1s

)
=

16
9

p∗

aB

(
a
1/2
0 − a

3/2
0

)2

(1 + (−9.69) × 10−3). (9.1)

Numerically the deviation from the DGBT formulas
makes up about 1%. Nevertheless, this is very important
for the precision of the extraction of the S-wave scattering
lengths from the experimental data on ε1s and Γ1s.

Recall that the experimental accuracy of ε1s and Γ1s,
measured by the PSI Collaboration [9] (8.1), is 0.5% and
4.6%, respectively. The experimental accuracy, which can
be reached by the PSI Collaboration [5] in the new set of
experiments, is expected to be equal to 0.2% and 1% for
ε1s and Γ1s, respectively.

The obtained deviation from the DGBT formulas is de-
fined by i) the non-perturbative correction δ

(s)
1s = −9.69×

10−3, caused by the smearing of the wave function Ψ1s(0)
of pionic hydrogen around the origin r = 0 due to the
relativistic factor

Ψ1s(0) →
∫

d3k

(2π)3

√
mπ−mp

Eπ−(�k )Ep(�k )
Φ1s(�k ) =

Ψ1s(0)
(

1 +
1
2

δ
(s)
1s

)
, (9.2)

and ii) the perturbative correction δ
(2)
1s = (1.11 ± 0.06) ×

10−3 calculated to the second order in strong low-energy
interactions. We would like to emphasize that both δ

(s)
1s

and δ
(2)
1s are model-independent corrections.

The value of δ
(2)
1s is a test of the applicability of the

perturbative treatment of strong low-energy interactions
to the analysis of the displacements of the energy levels
of pionic hydrogen. It is important to notice that, due to
Adler’s consistency condition, the partial width of the en-
ergy level of the ground state (9.1) is valid to any order of
the perturbative theory in strong low-energy interactions.

We have found that the second-order correction
ε
(2)
1s to the shift of the energy level is of order

O

(
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2
)

and divergent logarithmically.

Following the experience of the theoretical analysis of
the Lamb shift by Bethe and removing logarithmic di-
vergence by renormalization of the reduced mass of the
bound π−p system we obtain the second-order contri-
bution to the energy shift dependent on the cut-off K:
ε
(2)
1s (K). Since by derivation relative momenta of the π−p

and π0n pairs cannot exceed the value 1/aB = αµ, we
have set K = 1/aB = αµ.

We would like to emphasize that the effective La-
grangian Lstr(0), which we have used for the description of
the amplitude of the πN scattering, is unrenormalizable
and depends only on physical parameters. Perturbative
corrections to the energy level displacements can be cal-
culated only in the tree-approximation and no hadronic
loops are allowed. This means that all divergent contribu-
tions, which we encounter for the calculation of the shift
of the energy level, should be removed by renormalization
of the reduced mass of the bound π−p state.

Setting K = αµ we have obtained the value of the
second-order correction ε

(2)
1s (αµ), which makes up (0.111±

0.006)% of the first-order correction ε
(1)
1s . This testifies the

applicability of the perturbative treatment of strong low-
energy interactions to the analysis of the displacements
of the energy levels of pionic hydrogen. We have shown
that the width Γ1s of the energy level of the ground state,
defined by the DGBT formula with the wave function
smeared around the origin (9.2) due to the relativistic fac-
tor, is valid to any order of the perturbation theory due
to Adler’s consistency condition.

In our approach the relative correction ε
(2)
1s /ε

(1)
1s =

1.11×10−3 is fully due to the choice of the cut-off, K = αµ.
Any higher values of K can change this ratio drastically.
Since, as usual, the choice of the cut-off is the most subtle
problem of quantum field theory, one has to look for ar-
guments in favour of the given choice. In this connection
we would like to refer to the result obtained by Trueman
within the non-relativistic potential model approach [1].
Trueman calculated the second-order correction to the
shift of the energy level. In our notation his result reads∣∣∣ε(2)1s /ε

(1)
1s

∣∣∣ � aπ−p/aB = αµ
(
2a1/2

0 + a
3/2
0

)
= 1.68× 10−3.

Such a numerical agreement is in favour of our choice of
the cut-off, K = αµ.

Our quantum field theoretic and relativistic covariant
treatment of the shift and width of the ground state of
pionic hydrogen allows to calculate the shift εn� and width
Γn� of the energy level of any excited state n+ of pionic
hydrogen with n �= 1 and + �= 0. In our approach for
εn� and Γn� with n �= 1 and + �= 0 we expect to get the
following results:

εn� ∼ a
(�)
π−p→π−p

∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k � Φn�(k)

∣∣∣∣∣
2

,

Γn� ∼
∣∣∣a(�)

π−p→π0n

∣∣∣2
∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k � Φn�(k)

∣∣∣∣∣
2

,

(9.3)

where a
(�)
π−p→π−p and a

(�)
π−p→π0n are the scattering lengths

of the πN scattering with a relative angular momentum +,
Φn�(k) is the radial wave function of the n+ state of pionic
hydrogen in the momentum representation.

A more detailed calculation of εn� and Γn� with n �= 1
and + �= 0 including corrections caused by the QCD
isospin-breaking and electromagnetic interactions we are
planning to carry out in our forthcoming publication.



662 The European Physical Journal A

The results, which we expect to obtain, should be com-
pared with those by Lyubovitskij and Rusetsky [6] and
Lyubovitskij et al. [7] derived for the ground state of pio-
nic hydrogen.

According to Lyubovitskij and Rusetsky [6] and
Lyubovitskij et al. [7], the DGBT formula for the shift
of the energy level of the ground state is modified by the
contributions of the QCD isospin-breaking and electro-
magnetic interactions by the factor (1 + δ̃1s) [6,7]. The
estimates of the correction δ̃1s obtained within ChPT [6]
and the perturbative chiral quark model (PChQM) [7] are
equal to δ̃

(ChPT)
1s = (−4.8 ± 2.0) × 10−2 and δ̃

(PChQM)
1s =

−2.8 × 10−2, respectively. These results are in agreement
with that calculated within the potential model approach
(PMA) [8]: δ̃

(PMA)
1s = (−2.1 ± 0.5) × 10−2.

We have shown that the corrections to the shift of
the energy level of the ground state of pionic hydro-
gen caused by strong low-energy interactions are of order
of magnitude smaller compared with the corrections in-
duced by the QCD isospin-breaking and electromagnetic
interactions [6,7]. Nevertheless, the non-perturbative cor-
rection, defined by the smearing of the wave function of
the ground state of pionic hydrogen around the origin
(9.2), is co-measurable with the contributions caused by
QCD isospin-breaking and electromagnetic interactions [6]
and [7]. Such a correction calculated for the energy level
displacement of the ground state of pionium, the π−π+

bound state, is equal to δ
(s)
1s = −4α/π = −9.29 × 10−3.

We acknowledge helpful discussions with Jürg Gasser and Koka
Rusetsky. We are grateful to Lyudmila Dahno and Alexander
Kobushkin for reading the manuscript and useful remarks. The
remarks and comments of the referee of our manuscript are
greatly appreciated.

Appendix A. Calculation of the momentum
integral in (4.6)

The momentum integral (4.6) defines the generalization
of the DGBT formulas due to the quantum field theoretic
and relativistic covariant derivation. For comparison of the
obtained result with the DGBT formulas the momentum
integral (4.6) should be calculated explicitly. The calcula-
tion of this momentum integral we carry out in the limit
mp → ∞. This yields

∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
Φ1s(�k ) =

∫
d3xΨ1s(�r )

∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
ei

�k · �r =

−Ψ1s(0)
√

mπ−
2
π

∫ ∞

0

dr r e−r/aB
d
dr

∫ ∞

0

dk cos(kr)
(m2

π− + k2)1/4
.

(A.1)

The integral over k is equal to [24]∫ ∞

0

dk cos(kr)
(m2

π− + k2)1/4
=

21/4
√

π

Γ (1/4)

√
mπ−

(mπ−r)1/4
K1/4(mπ−r),

(A.2)
where we have used the formula [25]

Kν(xz) = Γ
(
ν +

1
2

) (2z)ν

√
π xν

∫ ∞

0

cos(xt)dt

(t2 + z2)ν+1/2
(A.3)

and the relation K−ν(xz) = Kν(xz) [26].
Substituting (A.2) in (A.1) we get∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
Φ1s(�k ) = −Ψ1s(0)

1√
π

25/4

Γ (1/4)

×
∫ ∞

0

dxx e−x/mπ−aB
d
dx

(
x−1/4K1/4(x)

)
, (A.4)

where x = mπ−r. Using the formula [27](
d
dx

x−1/4K1/4(x)
)

= −x−1/4K5/4(x) (A.5)

we transform the integral over x to the form∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
Φ1s(�k ) = Ψ1s(0)

1√
π

25/4

Γ (1/4)

×
∫ ∞

0

dx e−x/mπ−aBx3/4K1/4(x). (A.6)

Using the formula [28]∫ ∞

0

dxxµ Kν(x) = 2µ−1 Γ

(
µ + ν + 1

2

)
Γ

(
µ − ν + 1

2

)
(A.7)

we get∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
Φ1s(�k ) =

Ψ1s(0)
(

1 − α
µ

mπ−

4√
π

Γ (3/4)
Γ (1/4)

+ O(α2)
)

=

Ψ1s(0)
(

1 +
1
2

δ
(s)
1s

)
. (A.8)

The correction δ
(s)
1s , caused by the smearing of the wave

function of the ground state of pionic hydrogen by the
relativistic factor, reads

δ
(s)
1s =

1
|Ψ1s(0)|2

×
(∣∣∣∣∣

∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
Φ1s(�k )

∣∣∣∣∣
2

− |Ψ1s(0)|2
)

=

−α
µ

mπ−

8√
π

Γ (3/4)
Γ (1/4)

+ O(α2) = −9.69 × 10−3. (A.9)

Thus, the correction to the DGBT formulas, caused the
quantum field theoretic and relativistic covariant deriva-
tion of the energy level displacement of the ground state
of pionic hydrogen, makes up 0.969%.
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Appendix B. Calculation of ε
(2)
1s and Γ1s

The energy level shift ε
(2)
1s and the width Γ1s are defined by

the second term in (3.8). We rewrite this term as follows:

i

2

∫
d4x 〈A(1s)

πp (�P , σp)|T(Lstr(x)Lstr(0))|A(1s)
πp (�P , σp)〉 =

i

2

∫
d4x θ(x0)

×〈A(1s)
πp (�P , σp)|Lstr(x)Lstr(0)|A(1s)

πp (�P , σp)〉
+

i

2

∫
d4x θ(−x0)

×〈A(1s)
πp (�P , σp)|Lstr(0)Lstr(x)|A(1s)

πp (�P , σp)〉 =

i

2

∫
d4x θ(x0)

1
(2π)6

∫
d3kπ−√

2Eπ−(�kπ−)

d3kp√
2Ep(�kp)

× d3qπ−√
2Eπ−(�qπ−)

d3qp√
2Ep(�qp)

δ(3)(�P − �kπ− − �kp)

× δ(3)(�P − �qπ− − �qp) 2E(1s)
A (�P )Φ†

1s(�kπ−)Φ1s(�qπ−)

×〈π−(�kπ−)p(�kp, σp)|Lstr(x)Lstr(0)|π−(�qπ−)p(�qp, σp)〉

×U1s(�P , σp) +
i

2

∫
d4x θ(−x0)

1
(2π)6

∫
d3kπ−√

2Eπ−(�kπ−)

× d3kp√
2Ep(�kp)

d3qπ−√
2Eπ−(�qπ−)

d3qp√
2Ep(�qp)

δ(3)(�P−�kπ−−�kp)

× δ(3)(�P − �qπ− − �qp) 2E(1s)
A (�P )Φ†

1s(�kπ−)Φ1s(�qπ−)

×〈π−(�kπ−)p(�kp, σp)|Lstr(0)Lstr(x)|π−(�qπ−)p(�qp, σp)〉.
(B.1)

Setting �P = 0 and making the necessary integration we get

i

2

∫
d4x 〈A(1s)

πp (0, σp)|T(Lstr(x)Lstr(0))|A(1s)
πp (0, σp)〉 =

2M (1s)
A

i

2

∫
d4x θ(x0)

∫
d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×〈π−(�k )p(−�k, σp)|Lstr(x)Lstr(0)|π−(�q )p(−�q, σp)〉

+2M (1s)
A

i

2

∫
d4x θ(−x0)

∫
d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×〈π−(�k )p(−�k, σp)|Lstr(0)Lstr(x)|π−(�q )p(−�q, σp)〉.
(B.2)

According to (3.9) the shift ε
(2)
1s and the width Γ1s are

defined by

−ε
(2)
1s + i

Γ1s

2
=

∫
d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )
i

2

∫
d4x

×〈π−(�k )p(−�k, σp)|T(Lstr(x)Lstr(0))|π−(�q )p(−�q, σp)〉.
(B.3)

Since the wave functions Φ†
1s(�k ) and Φ1s(�q ) restrict

the momenta k ∼ q ∼ 1/aB, the matrix elements of
the operators Lstr(x)Lstr(0) and Lstr(0)Lstr(x) can be
calculated in the low-energy limit k, q → 0.

In the low-energy limit the main contribution to the
intermediate states of the matrix elements of the operators
Lstr(x)Lstr(0) and Lstr(0)Lstr(x) comes from the states
|π−p〉 and |π0n〉. Inserting these intermediate states we get

i

2

∫
d4x

×〈π−(�k )p(−�k, σp)|T(Lstr(x)Lstr(0))|π−(�q )p(−�q, σp)〉 =
i

2

∫
d4x θ(x0)

×
∑

λp=±1/2

∫
d3Qπ−

(2π)32Eπ−( �Qπ−)

d3Qp

(2π)32Ep( �Qp)

×〈π−(�k)p(−�k, σp)|Lstr(x)|π−( �Qπ−)p( �Qp, λp)〉
× 〈p( �Qp, λp)π−( �Qπ−)|Lstr(0)|π−(�q )p(−�q, σp)〉
+

i

2

∫
d4x θ(−x0)

×
∑

λp=±1/2

∫
d3Qπ−

(2π)32Eπ−( �Qπ−)

d3Qp

(2π)32Ep( �Qp)

×〈π−(�k)p(−�k, σp)|Lstr(0)|π−( �Qπ−)p( �Qp, λp)〉
× 〈p( �Qp, λp)π−( �Qπ−)|Lstr(x)|π−(�q )p(−�q, σp)〉
+

i

2

∫
d4x θ(x0)

×
∑

λn=±1/2

∫
d3Qπ0

(2π)32Eπ0( �Qπ0)

d3Qn

(2π)32En( �Qn)

×〈π−(�k)p(−�k, σp)|Lstr(x)|π0( �Qπ0)n( �Qn, λn)〉
× 〈n( �Qn, λn)π0( �Qπ0)|Lstr(0)|π−(�q )p(−�q, σp)〉
+

i

2

∫
d4x θ(−x0)

×
∑

λn=±1/2

∫
d3Qπ0

(2π)32Eπ0( �Qπ0)

d3Qn

(2π)32En( �Qn)

×〈π−(�k)p(−�k, σp)|Lstr(0)|π0( �Qπ0)n( �Qn, λn)〉
× 〈n( �Qn, λn)π0( �Qπ0)|Lstr(x)|π−(�q )p(−�q, σp)〉. (B.4)
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Making the integration over x we obtain

i

2

∫
d4x

×〈π−(�k )p(−�k, σp)|T(Lstr(x)Lstr(0))|π−(�q )p(−�q, σp)〉 =
1
2

∑
λp=±1/2

∫
d3Qπ−

(2π)32Eπ−( �Qπ−)

× d3Qp

(2π)32Ep( �Qp)
(2π)3δ(3)( �Qπ− + �Qp)

× 1

Eπ−( �Qπ−) + Ep( �Qp) − Eπ−(�k) − Ep(�k) − iε

×〈π−(�k )p(−�k, σp)|Lstr(0)|π−( �Qπ−)p( �Qp, λp)〉
× 〈p( �Qp, λp)π−( �Qπ−)|Lstr(0)|π−(�q )p(−�q, σp)〉

+
1
2

∑
λp=±1/2

∫
d3Qπ−

(2π)32Eπ−( �Qπ−)

d3Qp

(2π)32Ep( �Qp)

× (2π)3δ(3)( �Qπ− + �Qp)

× 1

Eπ−( �Qπ−) + Ep( �Qp) − Eπ−(�q) − Ep(�q) − iε

×〈π−(�k)p(−�k, σ)|Lstr(0)|π−( �Qπ−)p( �Qp, λp)〉
×〈p( �Qp, λp)π−( �Qπ−)|Lstr(0)|π−(�q)p(−�q, σ)〉

+
1
2

∑
λn=±1/2

∫
d3Qπ0

(2π)32Eπ0( �Qπ0)

d3Qn

(2π)32En( �Qn)

× (2π)3δ(3)( �Qπ0 + �Qn)

× 1

Eπ0( �Qπ0) + En( �Qn) − Eπ−(�k) − Ep(�k) − iε

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Qπ0)n( �Qn, λn)〉
×〈n( �Qn, λn)π0( �Qπ0)|Lstr(0)|π−(�q)p(−�q, σ)〉
+

1
2

∑
λn=±1/2

∫
d3Qπ0

(2π)32Eπ0( �Qπ0)

d3Qn

(2π)32En( �Qn)

× (2π)3δ(3)( �Qπ0 + �Qn)

× 1

Eπ0( �Qπ0) + En( �Qn) − Eπ−(�q) − Ep(�q) − iε

×〈π−(�k)p(−�k, σ)|Lstr(0)|π0( �Qπ0)n( �Qn, λn)〉
×〈n( �Qn, λn)π0( �Qπ0)|Lstr(0)|π−(�q )p(−�q, σ)〉. (B.5)

Integrating over �Qp and �Qn we reduce the r.h.s. of (B.5)
to the expression

i

2

∫
d4x

×〈π−(�k )p(−�k, σ)|T(Lstr(x)Lstr(0))|π−(�q )p(−�q, σ)〉 =
1
2

∑
λp=±1/2

∫
d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

× 1

Eπ−( �Q) + Ep( �Q) − Eπ−(�k ) − Ep(�k ) − iε

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉

× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
1
2

∑
λp=±1/2

∫
d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

× 1

Eπ−( �Q) + Ep( �Q) − Eπ−(�q ) − Ep(�q ) − iε

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
1
2

∑
λn=±1/2

∫
d3Q

(2π)32Eπ0( �Q)2En( �Q)

× 1

Eπ0( �Q) + En( �Q) − Eπ−(�k ) − Ep(�k ) − iε

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉
× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉
+

1
2

∑
λn=±1/2

∫
d3Q

(2π)32Eπ0( �Q)2En( �Q)

× 1

Eπ0( �Q) + En( �Q) − Eπ−(�q ) − Ep(�q ) − iε

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉
× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉. (B.6)

Substituting (B.6) in (B.3) we determine the energy level
shift ε

(2)
1s by the expression

ε
(2)
1s = −

∫
d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×
[

1
2

∑
λp=±1/2

P
∫

d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

× 1

Eπ−( �Q) + Ep( �Q) − Eπ−(�k ) − Ep(�k )

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
1
2

∑
λp=±1/2

P
∫

d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

× 1

Eπ−( �Q) + Ep( �Q) − Eπ−(�q ) − Ep(�q )

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
1
2

∑
λn=±1/2

P
∫

d3Q

(2π)32Eπ0( �Q)2En( �Q)

× 1

Eπ0( �Q) + En( �Q) − Eπ−(�k ) − Ep(�k )

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉
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×〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉
+

1
2

∑
λn=±1/2

P
∫

d3Q

(2π)32Eπ0( �Q)2En( �Q)

× 1

Eπ0( �Q) + En( �Q) − Eπ−(�q ) − Ep(�q )

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉

× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉
]
, (B.7)

where P stands for the calculation of the principal value
of the integral over �Q.

The energy level width Γ1s is given by

Γ1s =
∫

d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×
[ ∑

λp=±1/2

∫
d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

×π δ(Eπ−( �Q) + Ep( �Q) − Eπ−(�k ) − Ep(�k ))

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
∑

λp=±1/2

∫
d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

×π δ(Eπ−( �Q) + Ep( �Q) − Eπ−(�q ) − Ep(�q ))

×〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉

+
∑

λn=±1/2

∫
d3Q

(2π)32Eπ0( �Q)2En( �Q)

×π δ(Eπ0( �Q) + En( �Q) − Eπ−(�k ) − Ep(�k ))

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉
× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉
+

∑
λp=±1/2

∫
d3Q

(2π)32Eπ0( �Q)2En( �Q)

×π δ(Eπ0( �Q) + En( �Q) − Eπ−(�q ) − Ep(�q ))

×〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉

× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉
]
. (B.8)

The integrands of the integrals over �Q should be calculated
in the limit k, q → 0. In this limit the matrix elements of
the operator Lstr(0) can be approximated by the S-wave

scattering lengths as

〈π−(�k )p(−�k, σ)|Lstr(0)|π−( �Q)p(− �Q, λp)〉
× 〈p(− �Q, λp)π−( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉 =[
8π
3

(mπ− + mp)
(
2a1/2

0 + a
3/2
0

)]2

δλpσ,

〈π−(�k )p(−�k, σ)|Lstr(0)|π0( �Q)n(− �Q, λn)〉
× 〈n(− �Q, λn)π0( �Q)|Lstr(0)|π−(�q )p(−�q, σ)〉 =

2
[
8π
3

(mπ− + mp)
(
a
1/2
0 − a

3/2
0

) ]2

δλnσ. (B.9)

This yields

ε
(2)
1s = −

∫
d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×
{[

8π
3

(mπ− + mp)
(
2a1/2

0 + a
3/2
0

)]2

×P
∫

d3Q

(2π)32Eπ−( �Q)2Ep( �Q)

× 1

Eπ−( �Q) + Ep( �Q) − mπ− − mp

+2
[
8π
3

(mπ− + mp)
(
a
1/2
0 − a

3/2
0

) ]2

×P
∫

d3Q

(2π)32Eπ0( �Q)2Ep( �Q)

× 1

Eπ0( �Q) + En( �Q) − mπ− − mp

}
(B.10)

and

Γ1s =
∫

d3k

(2π)3
Φ†

1s(�k )√
2Eπ−(�k )2Ep(�k )

×
∫

d3q

(2π)3
Φ1s(�q )√

2Eπ−(�q )2Ep(�q )

×
{

2
[
8π
3

(mπ− + mp)
(
2a1/2

0 + a
3/2
0

) ]2

×
∫

d3Q

(2π)32Eπ−( �Q)2Ep( �Q)
×π δ(Eπ−( �Q) + Ep( �Q) − mπ− − mp)

+4
[
8π
3

(mπ− + mp)
(
a
1/2
0 − a

3/2
0

) ]2

×
∫

d3Q

(2π)32Eπ0( �Q)2En( �Q)

×π δ(Eπ0( �Q) + En( �Q) − mπ− − mp)

}
. (B.11)

The subsequent calculation of ε
(2)
1s and Γ1s we discuss in

sect. 5.
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